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UNIQUENESS OF PREDUALS OF
CERTAIN BANACH SPACES'

BY
LEON BROWN AND TAKASHI ITO

ABSTRACT

In [1], the authors have shown the existence of non-quasireflexive Banach
spaces having unique isomorphic preduals. In fact, certain James-Linden-
strauss’ spaces have this property. In this paper it is shown that there are many
such separable spaces. More precisely, there exist infinitely many different
isomorphic types of James-Lindenstrauss’ spaces which are non-quasireflexive
and have unique isomorphic preduals.

A Banach space Y is said to be a predual of a Banach space X if Y*, the dual
of Y, is isomorphic (linearly homeomorphic) to X. A Banach space X is said to
have a unique predual if X has a predual and all preduals are mutually
isomorphic. It is not hard to see that quasireflexive spaces X (the quotient
space X**/X is finite dimensional) have unique preduals. In this paper, we are
interested in uniqueness of preduals of non-quasireflexive spaces. In the first
section, we consider spaces X such that X**/X is isomorphic to [,(T'). Theorem
1 is an improvement, and a generalization, of the result of [1].

In the second section we make a small modification of James-Lindenstrauss’
spaces and show some of these spaces have a certain property; see Proposition 1.

In the third section, we consider spaces X such that X**/X is reflexive. The
idea used in proving Theorem 1 is used to obtain a necessary and sufficient
condition for unique preduals; see Proposition 2. A sufficient condition (see
Corollary) enables us to obtain a large class of James-Lindenstrauss’ spaces with
unique preduals; see Theorem 2 or Theorems 3 and 4 for a more abstract
formulation.

1. The quotient space X **/X is isomorphic to /,(I')
THEOREM 1. Let X be a Banach space satisfying the following two conditions :
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a) the quotient space X**/X is isomorphic to I,(T'), where T is any set;
b) if X* does not contain a subspace isomorphic to l..
Then X* has a unique predual.

Note that if X* is separable, or more generally, if X* is a weakly compactly
generated Banach space, then X* satisfies condition b).

The proof of Theorem 1 consists of five lemmas. Lemmas 1, 2, and 5 are the
main steps of our proof. Lemma 2 and part of Lemma 1 are essentially given in
our previous paper [1]. In the following we will always regard X and X* as
subspaces, respectively, of X** and X*** in the canonical way. For a subspace
A of X**, A* denotes the annihilator of A in X***, and for a subspace A of
X*** A, denotes the set of elements in X** annihilated by A. According to
Dixmier’s observation [3], all preduals Y of X* can be identified (isomorphic)
with all subspaces of X** which are total over X* and minimal with respect to the
property of being total over X *. If Y is such a minimal total subspace of X **, then
we have the decomposition X*** = X*@PY", and by P, we denote the
projection of X*** onto X * with respect to this decomposition. In particular,
the space X *** has the canonical decomposition; X*** = X*@ X*. An inner
product (u, v) for u € X** and v € X*** means the duality between X** and
X***. When we refer to the wk* topology, we will always mean the X**
topology on X***.

Since [,(I') has the “lifting property”, the hypothesis X **/X is isomorphic to
(') implies that X is complemented in X **; see Kothe, p. 184 of [7]. Choose a
subspace A so that X** = X ¢ A, where A is isomorphic to /,('). We will
always regard X* as the dual space of A in the natural way although X* is not
necessarily isometric to A *. Finally, K(X, A) denotes the set of all compact
operators from X to A.

LeMMA 1. There is a one to one correspondence between T € K(X, A) and
minimal total subspaces Y of X** (T ~ Yr) such that:

i) T*=Py|x: and Y'={z-T*z|z € X"},

i) Y={x+a|Tx=a—-T**a, x€E X,a € A}.
We denote the set given by ii) as Yr.

Proor. If a minimal total subspace Y of X ** is given, then the existence of
T € K(X, A) satisfying i) and ii) is proven in {1] under the assumption of a
countable T' and a separable X*. The argument given depends on Grothen-
dieck’s theorem: every operator from /. into a separable Banach space is weakly
compact. This theorem has been generalized in several ways. In particular
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Rosenthal [10] shows that if X * does not contain any isomorphic copy of [.. then
every operator from [.(I') into X* is weakly compact. Using this fact and an
argument similar to the one on pp. 322 and 323 of [1], one can show the existence
of T € K(X, A) satisfying i) and ii).

Conversely, if T€ K(X,A) is given, then E={z - T*z|z € X'} is wk*-
closed in X***, This can be seen easily by a standard argument as follows: It
suffices to show E N By--- (Bx-- ts the unit ball of X ***) is wk*-closed in X ***.
If a net {z, - T*z.} in E N Bx-.. converges to w € X*** in the wk* topology,
then {z.} is a bounded net in X* because {z,} is the image of {z, — T*z,} by a
bounded projection defined by the decomposition X*** = X*@ X*. There is a
subnet {z,} such that z, ——>z where z € X* because X* is wk*-closed in
X*** Since T* is compact, there exists a subnet {z,-} of {z..} such that T*z,.—> y
strongly. However T*z,-— T*z in the X topology on X*. Therefore T*z =y,
Zar— T*zwik—; z—-T*zandw =2—-T*z €E, thus E is wk*-closed in X*** It
is easy to see that X*@ E = X***. Furthermore, with a computation and the
fact that T** maps X** = X @ A into A (T is compact) one sees that E, = Y
(as given in ii)). Therefore, since E is wk*-closed, E = (E,)'= Y7 and
X*@® Y= X***. This implies that Y is a minimal total subspace of X**. To
show i), let w € X*, and we have w = T*w +(w — T*w) with T*w € X* and
w — T*w € E = Y1 which implies Py, | x+= T*. Finally, the one to one corre-
spondence is a consequence of i) and ii).

LEMMA 2. For any minimal total subspace Y of X**, Y is complemented in
X** and X**|Y is isomorphic to 1,(T).

Proor. This is proven in [1] and we outline the argument given (see p. 324).
Suppose Y is given, Y = Y7 for some compact operator T € K(X, A} (Lemma
1). Since T is compact, I» — T**|4 becomes a Fredholm operator on A. Using
this fact, we have decompositions of X and A as follows: X = Z @ X,, where
Z=T'(Im(I.—T**|s)) and X, is finite dimensional and A =
A @Ker(l, — T**|4), where A, is finite co-dimensional in A. Now one can
show Y @ X, A, = X**. Hence Y7 is complemented in X** and X**/Y is
isomorphic to X, Ay, which is isomorphic to A.

REMARK. In this lemma, to show that Y is complemented in X**, our

argument only depends on the fact that I, — T**|, is a Fredholm operator
on A.

LemMma 3. If T € K(X, A) has norm less than 1, then we have Y, P A =
X**. Therefore Yr is isomorphic to X.
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Proor. If x+a=a, where Tx =a—T**a, x€ X, a, a;E€ A, then x =
a—a, =0, (XNA={0}) and a—T**a =0. Since I, — T**|. is invertible
(IT**|all<1), a=0. Thus YN A ={0}. To see that Y- P A = X**, let
x*=x+a, xEX, a€A. Set a,=(I.—-T**|4)'Tx, then x+a=
x+a,+a—-a, withx+a,€Yranda—-a € A.

LEmmA 4. For T and S in K(X, A) we have:

i) |Pr| X =Ps|X*|=|T~S],

i) [ Ps| Yzl = [ Pr|X* = Ps [ X*[[[ Ix-e = Po],
where we denote Py, by Pr for T € K(X, A).

Proor. For z € X*

Izlls-= sup [(a, 2)|:
llal=1
Then we have ||z [[a- =] z|| for z € X*. In fact || - ||4- is equivalent to the original
norm ||| on X* as a subspace of X***. Since T* = Pr|x: and §* = Ps|x:, we
see that

IT~S|= sup |T*z~S*z|= sup |Prz—Psz|
Izlla-=1 lzflav=1
zeXt zeXt

Z sup I Prz = Psz || = || Pr |x+ = Ps | x|
z||=1
zeX*

To see ii), we observe that PsPr = Pr and (I - Py) (I — P))=1- Pr. Hence
Ps(I-Pr)=Ps(I-Pr) (I-Py) (I-Pr)=(Ps—Pr) (I-Py) (I Pr), which
implies that Ps is equal to (Ps— Pr) (I — P;) on Yr. Therefore ||Ps|vi]=
| Ps |x+ = Pr | x| | T = Po].

Lemma 5. Forany T € K(X, A) there is a positive number § = §(T) >0 such
that Y is isomorphic to Yr if |[T— S| <8 and S€ K(X,A).

Proor. Fix T€ K(X, A). By Lemma 1, Yr is a minimal total subspace of
X** hence we may regard X*, X** and X*** as Y%}, Y?*, and Y¥#**
respectively. We denote the dual norm, the bidual norm and the triple dual norm
of Yr by ||x*|r for x*€ X*, | x**|lr for x** € X** and || x***||; for x*** €
X *** respectively. We can see that ||| =]-] on X* and X***, and || - |- =|-|
on X**. By Lemma 2 we can choose a subspace B of X** such that
X** =Y, B and B isisomorphic to /,(I'). If S € K(X, A), then Ys becomes a
minimal total subspace of Y%, hence we can apply Lemma 1 in this new
situation. Then there is a compact operator R from Y, to B such that
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R* = Ps|y4, where we regard X* as Y% and Y as B* in the natural way. We
want to show that the operator norm || R |r of R from (Yx,|:|r) to (B,|-|+) is
less than 1 if S is close enough to T.

Define ||v|ls- on Y7 by

lvlle-= sup [<b, )],
Wlrs1
beB

then |[v]s-=| v |- =| v|| for v € Y+ Since these three norms are equivalent on
7, there is @ >0 such that

lols-=]ol=afvfsr for veE YE

Note that a depends upon only T and the choice of B.

IR |z =[R*|lr = sup ||Psvr
Iola; 21
s sup |Pow| = af Ps| Yi|.

flol=a
vEYH

By Lemma 4, |R |+ = a| Ps[x:~ Prlx| [T - PollS a = T| |1~ P If
0<8<a|I-P|||S-T|<6éandS E K(X,A), then | R |- < 1. Therefore,
Ys has the subspace B as a complement in X** (Lemma 3). Hence we can
conclude that Ys is isomorphic to Yr.

Proor oF THEOREM 1. Define an equivalent relation: T is equivalent to S if
T and S are in K(X, A) and if Yy is isomorphic to Ys. By Lemma 5 each
equivalent class is open with respect to the operator norm topology of K(X, A),
Thus it is open and closed. Since K (X, A) is connected with respect to the norm
topology, the space K(X, A) must be one equivalent class. Thus the theorem is
proved.

2. James-Lindenstrauss’ spaces

A separable Banach space B is given. The construction of
James-Lindenstrauss’ spaces, which was initiated by James [4] and generalized
by Lindenstrauss [8], is as follows: Choose a dense sequence {b,} on the unit
sphere of B and an exponent r with 1 < r <. Define a Banach space E to be
the set of all sequences {£.} of scalars such that

k

461 = sup(

j=1

ry Ur

n_<i=n, B
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where the sup is taken over all finite sets of integers with0 = no<n, <n,<---<
n and k =1,2,---.

Let e, = {8.:}7-: be the n-th unit vector of E. It is clear from the definition that
{e.} form a monotone boundedly complete basis of E, hence E is isometric
isomorphic to the dual of a Banach space X(E = X*), where X can be identified
as the closed linear span of the biorthogonal functionals {f,} to the base {e.}. It is
also clear that we have a natural quotient map ¢ from E onto B by
d({&.}) =22, &b, hence ¢* is an isometric isomorphism from B* into E*. In
[8] Lindenstrauss shows that for r =2

E*=X**=XO ¢(B*).

The same argument holds for any r with 1 <r <. The space E is denoted by
JL(B, r). In this notation, we ignore the possibility that JL (B, r) may depend on
the choice of the sequence {b.}.

We examine a property of some examples of James-Lindenstrauss’ spaces.

ProrposiTION 1.

a) Every operator from I, to JL(l,, r) is compact if 1<r<p <=,

b) Every operator from L, to JL(L,r) is compact if 1<r<min {2,p}, L,
denotes L,[0,1].

Proor. The proof will be similar to the argument used to prove compactness
of operators from L,(u) to L.(v); see the appendix of Rosenthal [10].

We observe the following direct consequence of the definition of our norm in
JL (B, r). Suppose a sequence {x,} in JL(B, r) is a normalized block basis of the
natural basis {e,} of JL(B,r), then for any positive integer n and scalars
ay, 0, 0, n, We have

n yr
(3 laul) =
k=1

If {z,} is a normalized sequence which converges weakly to zero in JL(B, r), we
can choose a subsequence {z,, } which is equivalent to a block basis; see Bessaga
and Pelczynski [2]. Hence for a suitable constant K, we have

m 1/r m
) (5 1r) =K 2wz
k=1 =1

for any positive integer m and scalars a, az,***, Om.
Secondly, suppose {y.} is a normalized sequence which converges weakly to
zero in I, or L, for 1< p <<, then it follows from Bessaga and Pelczynski [2],
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Kadec and Pelczynski [5], and also observed by Rosenthal [10], that there is a
Subsequence {y., } such that for any positive integer m and scalars a;, az, - * *, @

m m 1/p’
) > an|=c(3 lal)
k=1 =y

where p’ = p for the spaces I, p>1and L, p=2, p'= p or 2 for the space L,
p>2 and C is a constant.

Suppose T is an operator from [,(L,) to JL(l,r) (JL(L, r)) which is not
compact. Then there is a normalized sequence {y.} in I,(L,) which converges
weakly to zero and inf, || Ty, || = 8 > 0. From the above two observations we can
choose a subsequence {y,,} such that {y,,} satisfies (**) and {Ty.,, } satisfies (*).
Then for any positive integer m and scalars a,, as,* -, @, we have

m r K m
(2 |ak I') é—g "2 O Ty,.k
k=1 k=1
KITI|$ oy,

8 k=1

K T"C m , 1/p’
=SS (E lar)

m

A

Because r < p’, we have a contradiction which completes the proof.

3. The quotient space X**/X is reflexive

Quasireflexive spaces X (X **/X is finite dimensional) have unique preduals.
However, it is not known whether the /,-sum of a James Space J (J**/J is one
dimensional) has a unique predual. Or more generally, if X** = X @ A, where
X is a Banach space and A is infinite dimensional and reflexive, must X* have a
unique predual? Using the methods of Section 1, we can find necessary and
sufficient conditions for such a space to have a unique predual.

ProposiTiON 2. Let X be a Banach space such that X is complemented in X **
and X **[X is reflexive, then X* has a unique predual if and only if each minimal
total subspace of X** is complemented in X **.

Proor. Choose A, a subspace of X**, so that X** = X (§ A. The ““only if” is
easy to prove. Assume that X* has a unique predual and Y is a minimal total
subspace of X**. If T is an isomorphism from X onto Y then T** is an
automorphism on X**. X**=T** (X)T**(A)= YP T**(A) and we have
Y is complemented in X**.
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The “if” part requires three lemmas similar to Lemmas 1, 3 and 5. Let
B(X, A) denote the set of all bounded operators from X to A.

LeMMA 6. There is a one to one correspondence between bounded operators
T € B(X, A) and minimal total subspaces Y of X** (T ~ Yr) such that

iy T*=Py|x and Y'={z-T*z|z € X"},

i) Y={x+a|Tx=a-T**a,xEX,a€EA}=Yr.

Proor. If a minimal total subspace Y of X** is given, let § = Py|xs;
§: X*— X*. Since X* can be regarded as the dual space of the reflexive space
A, the weak topology on X* is equal to the A topology on X*. Thus S is
continuous if X* is given the A topology and X* is given the X topology.
Therefore there is an operator T: X — A such that T* =8 = Py |x,. It is not
difficult to see that Y ={z—T*z|z€X'}. Y={x+a|xE€EX, a€EA and
Tx = a— T**a} because an element x + a in X** (x € X,;a € A) belongsto Y
if x+ae(Y"), iffi(x+a,z-T*z)=0forallz€ X" iff (a—-Tx - T**a,z)=
0 for all z € X* iff a— Tx — T**a =0 because a — Tx — T**a € A.

Conversely, if TE B(X,A), then E={z - T*z|z € X'} is wk*-closed in
X*** This can be seen by showing E M Bx... is wk*-closed in X***. Let
{z. — T*z.} be a net which converges in the wk* topology to w. {2.} is a bounded
net because {z,} is the image of of {z. — T*z.} by a bounded projection defined
by the decomposition X*** = X*@ X*. Since {z.} is bounded, there is a wk*
limit point z of a subset {z,}. z € X* because X" is wk*-closed. Since A is
reflexive, and the A topology on X can be identified with the wk* topology of
X *** restricted to X*, Ixc— T* is wk* — wk* continuous from X* to X***,
Therefore z — T*z is a wk* limit point of the subset {z,. — T*z,}. Therefore, we
have w = z — T*z. The remaining argument is the same as in the proof of
Lemma 1, except for the reason T** maps X ** into A is that A is reflexive.

Lemma 7. If T€ B(X, A) has norm less than 1, then we have YDA =
X**. Therefore Yy is isomorphic to X.

Proor. The proof is identical to the proof of Lemma 3 except that one uses
Lemma 6 instead of Lemma 2.

Lemma 8. For T € B(X, A) there is a positive number 8 = §(T) >0 such that
Ys is isomorphic to Yr if | T— S| <8.

Proor. The proof of this Lemma is identical to the proof of Lemmas 4 and 5,
using Lemmas 6 and 7 and the hypothesis that each minimal total subspace Y of
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X** is complemented (complement must be reflexive) instead of Lemmas 1, 2
and 3.

Proof ofF ProposiTioN 2. The proof is completed using Lemma 8 as we
proved Theorem 1 using Lemma 5.
From Proposition 2 we get sufficient conditions for unique preduals.

CoroLLARY. Let X be a Banach space such that X**=X@ A and A is
reflexive. If every operator from X into A is a compact operator then X* has a
unique predual. Or more generally, for every operator T from X into A, the
operator T**|, is a strictly singular operator on A then X* has a unique predual
(see T. Kato [6] for definition and properties of strictly singular operators).

Proor. If T**|, is compact or more generally strictly singular then I, -
T**| 4 is a Fredholm operator. The proof is completed using the remark to
Lemma 2 and Proposition 2.

THEOREM 2. The following James—Lindenstrauss’ spaces have unique
preduals:

a) JL(L,r) for 1<r<p<w,

b) JL(L,,r) for 1<r<min{2,p},

c) JL(co, 1) for 1<r <,

Proor. a) and b) is a direct consequence of Proposition 1 and the Corollary
of Proposition 2. ¢) follows from Theorem 1.

Note that if JL (B, r,) and JL(B,, r,) are two spaces mentioned in a), b), or ¢)
of Theorem 2 and B, is not isomorphic to B, then JL (B, r;) is not isomorphic to
JL(B,, r,). This follows from the fact that these spaces have unique preduals.

One can generalize a) of Theorem 2 as follows:

THeOREM 3. Let X be a Banach space satisfying the following two conditions

a) X** =X A and A is isomorphic to I, with 1< g <,

b) X* does not contain a subspace isomorphic to I, with 1/p + 1/q = 1, then X*
has a unique predual.

Proor. Let T be an operator from X to A, then T* is a strictly singular
operator from A * to X*. This follows from condition b) and the fact that every
infinite dimensional subspace of I, contains a subspace isomorphic to /,; see
Pelczynski [9]. Since [, is subprojective’, a theorem of Whitley (see [12]) implies

" Every infinite dimensional subspace contains an infinite dimensional subspace complemented
in the entire space.
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that T** is a strictly singular operator from X** to'A. Thus T**|, is a strictly
singular operator on A (in fact compact) and the Corollary to Proposition 2
implies X* has a unique predual.

In a completely similar manner one can prove

TueOREM 4. Let X be a Banach space satisfying the following three condi-
tions:

a) X** =X A and A is reflexive,

b) A is subprojective,

¢) X* and A* are totally incomparable’, then X* has a unique predual.

Note that Theorem 3 is a special case of Theorem 4 and if A is isomorphic to
L, 2= q <x then we have a generalization of a part of b), in Theorem 2.
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